Reactions of pentafluorophenylxenon(II) hexafluoroarsenate $[C_6F_5Xe]^+[AsF_6]^-$ with aromatic compounds

H.J. Frohn*, A. Klose

Department of Inorganic Chemistry, University of Duisburg, Lotharstr. 1, D-47048 Duisburg (Germany)

V.V. Bardin

Institute of Organic Chemistry, 630090 Novosibirsk (Russian Federation)

(Received July 7, 1992; accepted December 1, 1992)

Abstract

Pentafluorophenylxenon(II) hexafluoroarsenate $[C_6F_5Xe]^+[AsF_6]^-$ reacts (MeCN, 20 °C) with aromatic compounds C_6H_5X (X = CH₃, F, CF₃, NO₂ and CN), yielding isomeric mixtures of polyfluorinated biphenyls $XC_6H_4C_6F_5$. When X = I, iodopentafluorobenzene is formed in addition, whereas trimethylsilylbenzene (X = SiMe₃) is only converted to $C_6H_5C_6F_5$ and C_6F_5H . These results are compared with the data for the radical pentafluorophenylation and fluorination reactions of the corresponding aromatic compounds with XeF₂. Polyfluoroaromatic compounds C_6F_6 , C_6F_5H , C_6F_5I , C_6F_5CN and $C_6F_5SiMe_3$ do not react with $[C_6F_5Xe]^+[AsF_6]^-$ under the same conditions.

Introduction

Since the first communications on the synthesis of $[C_6F_5Xe]^+[Y]^ \{Y=C_6F_5BF_3 [1, 2], (C_6F_5)_3BF [3] and (C_6F_5)_2BF_2$ **1** $[4]\}, only a few data$ have been available about their reactivity [1–7]. The reaction of**1**withnucleophiles X⁻ (X=Cl, Br and I) leads to halogenopentafluorobenzenes $<math>C_6F_5X [1, 2]$. Interaction of salt **1** with C–H acids results in the replacement of the acidic proton by the C_6F_5 group. Substitution of the aromatically bonded hydrogen by the C_6F_5 group proceeds to a small extent, but the structure of the products has not yet been investigated [5–7].

$$[C_{6}F_{5}Xe]^{+}[(C_{6}F_{5})_{2}BF_{2}]^{-} \xrightarrow{CH_{2}Cl_{2}} \xrightarrow{-Xe} PhCH_{2}CC_{6}F_{5}X \quad (X = Cl, Br, I)$$

$$(1) \xrightarrow{PhCH_{2}CN} PhCH_{2}CC_{6}F_{5})CN + PhC(C_{6}F_{5})_{2}CN$$

$$\xrightarrow{Ph_{3}CH} Ph_{3}CC_{6}F_{5} + (C_{6}F_{5}C_{6}H_{4})Ph_{2}CC_{6}F_{5}$$

$$C_{6}H_{5}CF_{3} \rightarrow C_{6}F_{5}C_{6}H_{4}CF_{3}$$

^{*}To whom all correspondence should be addressed.

However, the $[C_6F_5Xe]^+$ cation is able to arylate aromatic compounds. The information on isomer distribution in the pentafluorophenylated products could suggest the mechanism of the reaction. Unfortunately, thermal instability of $[C_6F_5Xe]^+[(C_6F_5)_2BF_2]^-$ [4] did not allow us to study the reactivity of the $[C_6F_5Xe]^+$ cation at room or elevated temperatures.

Hence, we have studied the interaction of aromatic compounds with $[C_6F_5Xe]^+[AsF_6]^-$ (2). This salt can easily be prepared from salt 1 [4] (details of the preparation are described elsewhere). Its solution in MeCN was stable at room temperature for *c*. 1 d, but quickly decomposed at 70–80 °C (3–4 h) to yield pentafluorobenzene and decafluorobiphenyl (~10:1, mol).

Results and discussion

Pentafluorophenylxenon(II) hexafluoroarsenate (2) reacts readily with toluene at room temperature in acetonitrile to yield xenon and a mixture of 2'-, 3'- and 4'-CH₃C₆H₄C₆F₅ (**3a**, **3b**, **3c**). No pentafluorobenzene or benzyl derivatives such as $C_6H_5CH_2C_6F_5$ were detected among the reaction products (Table 1). Interaction of salt 2 with fluorobenzene proceeds more slowly and gives isomeric hexafluorobiphenyls $FC_6H_4C_6F_5$ (**4a**, **4b**, **4c**). Very similar

TABLE 1

Reactions of $[C_6F_5Xe]^+[AsF_6]^-$ (2) with C_6H_5X (CH₃CN, RT)

2 (μmol)	C ₆ H₅X (µmol)	Time (h)	Yield	XC ₆ H₄	C ₆ F ₅ ison	ners (%)			
			Of C_6F_5H	Yield			Relat	ive rati	0 ^a
			(%)	2'-	3'-	4'-	2'-	3′-	4'-
45	C ₆ H ₅ CH ₃ (76)	1.25	_	50	21	21	44	19	37
51	C ₆ H ₅ F (62)	14	5	35	20	24	37	19	44
12	$C_{6}H_{5}CF_{3}$ (25)	30	5	18	40	20	18	41	41
55	C ₆ H ₅ NO ₂ (65)	42	trace	27	22.5	22.5	2 8	24	48
45	C ₆ H ₅ CN (62)	24	trace	35	31	26	30	26	44
55⁵	C ₆ H ₅ I (60)	1	6.3	11.1	7.5	11.6	26	18	56
53°	С ₆ Н₅SiMe ₃ (53)	1	29						

^aCorrected for two ortho and two meta positions.

^bIodopentafluorobenzene (50% yield) and $C_6F_5C_6H_5$ (6.5% yield) were obtained.

 $^{c}\mathrm{C}_{6}\mathrm{F}_{5}\mathrm{C}_{6}\mathrm{H}_{5}$ (57% yield) and FSiMe_{3} were obtained.

results were obtained in the reactions of salt 2 with benzotrifluoride, nitrobenzene and benzonitrile, but here the conversion was complete only after 24-42 h and small amounts of C_6F_5H were formed in addition to the corresponding isomeric biphenyls.

$$[C_{6}F_{5}Xe]^{+}[AsF_{6}]^{-} \xrightarrow{MeCN, RT} (2) \xrightarrow{-Xe}_{-[MeCNH]^{+}[AsF_{6}]^{-a}} (5a, 5b, 5c) \xrightarrow{C_{6}H_{5}CH_{3}} CF_{3}C_{6}H_{4}C_{6}F_{5} + C_{6}F_{5}H^{b} \xrightarrow{(4a, 4b, 4c)} (4a, 4b, 4c) \xrightarrow{C_{6}H_{5}CF_{3}} CF_{3}C_{6}H_{4}C_{6}F_{5} + C_{6}F_{5}H^{b} \xrightarrow{(5a, 5b, 5c)} (5a, 5b, 5c) \xrightarrow{(5a, 6b, 5c)} NO_{2}C_{6}H_{4}C_{6}F_{5} + C_{6}F_{5}H^{b} \xrightarrow{(5a, 6b, 6c)} (6a, 6b, 6c) \xrightarrow{(5a, 7b, 7c)} NO_{2}C_{6}H_{4}C_{6}F_{5} + C_{6}F_{5}H^{b} \xrightarrow{(5a, 7b, 7c)} (7a, 7b, 7c)$$

^aDuring the reaction, the concentration of $[AsF_6]^-$ remained virtually unchanged. ^bTraces or minor amounts.

The reaction of iodobenzene with salt 2 leads to a mixture of isomeric $IC_6H_4C_6F_5$ (8a, 8b, 8c). Small amounts of $C_6F_5C_6H_5$ and C_6F_5H are obtained, as well, but the main product is iodopentafluorobenzene. Examination of this process by ¹⁹F NMR spectroscopy immediately after addition of C_6H_5I to the MeCN solution of 2 showed no formation of phenyl-(pentafluorophenyl)iodonium salts as possible precursors of C_6F_5I . It should be emphasized that $[C_6F_5IC_6H_5]^+$ is relatively stable in MeCN at room temperature [8].

$$[C_{6}F_{5}Xe]^{+}[AsF_{6}]^{-} + C_{6}H_{5}I \xrightarrow{\text{MeCN}} C_{6}F_{5}I + IC_{6}H_{4}C_{6}F_{5} + C_{6}F_{5}C_{6}H_{5} + C_{6}F_{5}H$$
(8a, 8b, 8c)

Interaction of salt 2 with trimethylsilylbenzene proceeds immediately after addition of the aromatic compound to the solution of salt 2. 2,3,4,5,6-Pentafluorobiphenyl is the main product in addition to pentafluorobenzene, fluorotrimethylsilane and xenon.

$$[C_6F_5Xe]^+[AsF_6]^- + C_6H_5SiMe_3 \longrightarrow C_6F_5C_6H_5 + C_6F_5H + FSiMe_3$$

.....

This regiospecificity of the pentafluorophenylation of $C_6H_5SiMe_3$ is not attributed to other trimethylsilylarenes: treatment of salt 2 with 1-trimethylsilyl-2-fluorobenzene or 1-trimethylsilyl-3-trifluoromethylbenzene leads to the formation of a mixture of pentafluorophenylated aromatics.

Comparison of the reactions of $[C_6F_5Xe]^+[AsF_6]^-$ in acetonitrile and of XeF_2/HF in CH_2Cl_2 or CCl_4 [9] with aromatic compounds indicates formally similar results: transfer of group Z from [Z-Xe] ($Z=C_6F_5$ or F) to C_6H_5X and generation of $Z-C_6H_4X$ and xenon. But the isomer ratio of $XC_6H_4C_6F_5$ ($X=CH_3$, F, CF_3 and NO_2) differs substantially from that of aryl fluorides

which were obtained by the fluorination of C_6H_5X with XeF_2 [9]. In the latter case, the relative ratio of isomeric aryl fluorides FC_6H_4X demonstrates the preferential formation of *ortho-* and *para-*disubstituted benzenes (X = CH₃, F), whereas predominantly *meta* isomers were obtained from $C_6H_5CF_3$ and $C_6H_5NO_2$ (Table 2). (Unfortunately, our attempts to perform the reaction of salt **2** with fluorobenzene or benzotrifluoride in dichloromethane suspension failed, but in our opinion the observed difference between $XeF_2/HF-CH_2Cl_2$ (CCl₄) and $[C_6F_5Xe]^+[AsF_6]^-$ -MeCN cannot be explained by the different solvent.) On the other hand, the composition of our products and the relative ratio of isomeric biphenyls $XC_6H_4C_6F_5$ (X = CH₃, F, NO₂, CF₃, CN) are in accordance with the products obtained in the pentafluorophenylation of C_6H_5X with C_6F_5 radicals (Table 3). At the same time, the different composition of the reaction mixtures derived from $[C_6F_5Xe]^+[AsF_6]^-$ and C_6H_5X (X = CH₃, F, CF₃, NO₂ and CN) on the one hand, and iodobenzene and trimethylsilyl-

TABLE 2

C_6H_5X	FC_6H_4X (relative ratio, %) ^a							
	In CH ₂ C	l ₂ HF		In CCl₄-	HF			
	2-F	3-F	4-F	2-F	3-F	4-F		
C ₆ H ₅ CH ₃				35	6	59		
C_6H_5F	16	4	80	15	4	81		
C ₆ H ₅ CF ₃	28	48	24	0	91	9		
C ₆ H ₅ NO ₂	20	55	25	18	53	29		

Reactions of C₆H₅X with XeF₂ [9]

^aCorrected for two ortho and two meta positions.

TABLE 3

Reactions of C₆H₅X with C₆F₅ radicals

C_6H_5X	$XC_6H_4C_6F_6$ (relative ratio, %) ^a				
	2'-X	3'-X	4'-X		
C ₆ H ₅ CH ₃	53	19	28	10	
C ₆ H ₅ CH ₃	49	25	26	11	
C ₆ H ₅ CH ₃	44	19	37	13	
C_6H_5F	33	24	43	12	
C ₆ H ₅ F	28	13	59	13	
C ₆ H ₅ CF ₃	18	46	36	b	
C ₆ H ₅ CN	29	35	37	b	
C ₆ H ₅ I	26	18	56	ь	
C ₆ H ₅ NO ₂	17	42	41	10	

^aCorrected for two *ortho* and two *meta* positions. ^bThis work. Following the authors of refs. 10, 12 and 13, we used the reaction of pentafluoroaniline with pentyl nitrite for the generation of the C_6F_5 radical. Treatment of $C_6F_5NH_2$ with $C_5H_{11}ONO$ in an excess of iodobenzene causes spontaneous heating of the solution up to 70–80 °C and gas evolution. Analysis of the reaction mixture by ¹⁹F NMR spectroscopy showed the presence of the same products as obtained earlier in the reaction of iodobenzene with pentafluorophenylxenon(II) hexafluoroarsenate.

$$C_{6}F_{5}NH_{2} + C_{5}H_{11}ONO + C_{6}H_{5}I \xrightarrow[-H_{2}O, -N_{2}, -C_{5}H_{1}OH]{-H_{2}O, -N_{2}, -C_{5}H_{1}OH} C_{6}F_{5}I + IC_{6}H_{4}C_{6}F_{5} + C_{6}F_{5}H + C_{6}F_{5}C_{6}H_{5} (8a, 8b, 8c)$$

It should be noted that the isomer ratio of $IC_6H_4C_6F_5$ (8a, 8b, 8c) obtained here is the same as for the reaction of $[C_6F_5Xe]^+[AsF_6]^-$ with C_6H_5I .

The predominant formation of iodopentafluorobenzene may be explained by the attack of the electrophilic pentafluorophenyl radical [13] on C_6H_5I and subsequent decomposition of the unstable diaryliodonium radical [eqn. (2)]. The transfer of iodine to the more electronegative aryl group during decomposition of the unsymmetric radical [RR'I] \cdot has been discussed in ref. 14. Furthermore, addition to the iodine atom of iodobenzene is the preferable direction of electrophilic attack under the kinetically controlled conditions [15]. The formation of other products may be represented by eqns. (3)–(5).

$$C_{6}F_{5}NH_{2} + C_{5}H_{11}ONO \xrightarrow[-H_{2}O]{} [C_{6}F_{5}N_{2}^{+} + C_{5}H_{11}O^{-}] \longrightarrow$$
$$[C_{6}F_{5}N = NOC_{5}H_{11}] \longrightarrow C_{6}F_{5} \cdot + C_{5}H_{11}O \cdot + N_{2} \quad (1)$$

$$C_6F_5 \cdot + C_6H_5I \longrightarrow [C_6F_5IC_6H_5] \cdot \longrightarrow C_6F_5I + C_6H_5 \cdot$$
(2)

$$C_{6}F_{5} \cdot + C_{6}H_{5}I \longrightarrow \left[IC_{6}H_{4} \swarrow H_{C_{6}F_{5}}^{H} \right] \cdot \xrightarrow{RO}{-ROH} \frac{IC_{6}H_{4}C_{6}F_{5}}{(8a, 8b, 8c)}$$
(3)

$$C_6F_5 \cdot + C_6H_5 \cdot \longrightarrow C_6F_5C_6H_5 \tag{4}$$

$$C_6F_5 \cdot + ROH \longrightarrow C_6F_5H + RO \cdot (R = H, C_5H_{11})$$
(5)

Generation of the C_6F_5 · radical from $C_6F_5NH_2$ and $C_5H_{11}ONO$ in excess trimethylsilylbenzene leads to the formation of 2,3,4,5,6-pentafluorobiphenyl and pentafluorobenzene, together with some pentafluoroaniline derivatives.

$$C_6F_5NH_2 + C_5H_{11}ONO + C_6H_5SiMe_3 \xrightarrow[-H_2O, -N_2, -C_5H_{11}OH]{-H_2O, -N_2, -C_5H_{11}OH} C_6F_5C_6H_5 + C_6F_5H + \dots$$

In order to fill in the gap in the literature, we have also carried out the radical pentafluorophenylation of $C_6H_5CF_3$ and C_6H_5CN . The results (Table

3) are in a good agreement with our data on the pentafluorophenylation of these aromatics with salt 2 (Table 1).

It is known that hexafluorobenzene does not react with pentafluorophenyl radicals produced from pentafluoroaniline and pentyl nitrite at 80 $^{\circ}$ C [10], whereas pentafluorobenzene [11] or 1,2,4,5-tetrafluorobenzene [16] are very slowly converted to deca- and nona-fluorobiphenyls, respectively.

To complete the investigation of the reaction of $[C_6F_5Xe]^+[AsF_6]^-$ with aromatic compounds, we have studied the interaction of salt 2 with polyfluoroaromatics. We have found that C_6F_6 , C_6F_5H , C_6F_5CN , $C_6F_5SiMe_3$ and C_6F_5I are inert towards $[C_6F_5Xe]^+[AsF_6]^-$. No reaction was observed between $[C_6F_5Xe]^+[BF_4]^-$ and C_6F_5I in boiling acetonitrile, as well. This result contradicts that in ref. 3 which reports formation of the $[(C_6F_5)_2I]^+$ salt on treatment of C_6F_5I with $[C_6F_5Xe-MeCN]^+[(C_6F_5)_3BF]^-$. It should be noted that the salt $[C_6F_5Xe]^+[(C_6F_5)_3BF]^-$ was not isolated as an individual substance [3]. Hence, the formation of the iodonium salt $[(C_6F_5)_2I]^+$ may possibly be explained by the reaction of C_6F_5I with the initial XeF₂ which remains in the reaction mixture. Actually, we have found out that XeF₂ can convert iodopentafluorobenzene via $C_6F_5IF_2$ in the presence of acidic C_6F_5BXY compounds to the corresponding iodonium salt. (The conversion of $C_6F_5IF_2$ to $[(C_6F_5)_2I]^+$ has also been demonstrated in ref. 3.)

$$C_6F_5I + XeF_2 \longrightarrow C_6F_5IF_2 \xrightarrow{B(C_6F_5)_3} [(C_6F_5)_2I]^+ [(C_6F_5)_3BF]^-$$

The inertness of the pentafluorobenzene derivatives C_6F_5X towards salt **2** is contrary to the easy fluorination of these compounds by $XeF_2-BF_3 \cdot OEt_2$ which produces 1-X-heptafluoro-1,4-cyclohexadienes (X = F, H [17], SiMe₃ [18]). We have found that XeF_2 reacts with iodopentafluorobenzene in CH_2Cl_2 in the presence of catalytic amounts of $BF_3 \cdot OEt_2$ in the same manner as in the absence of a Lewis acid or a solvent [19].

$$C_6F_5I + XeF_2 \xrightarrow{[BF_3 \cdot OEt_2]} C_6F_5IF_2 + Xe$$

The results obtained have encouraged us to the conclusion that the pentafluorophenyl radical is a reactive key intermediate which participates in the reaction of $[C_6F_5Xe]^+[AsF_6]^-$ with aromatic compounds. The mechanism of the generation of this species from salt 2 is being examined at present.

The synthesis of individual fluorinated biphenyls for identification of the products produced in the reaction of $[C_6F_5Xe]^+[AsF_6]^-$ with C_6H_5X was performed by the following principal methods:

$$XC_6H_4Br + BuLi \longrightarrow XC_6H_4Li \xrightarrow{C_6F_6} XC_6H_4C_6F_5$$

 $[X = 2-CH_3$ (3a), 3-CH₃ (3b), 4-CH₃ (3c), 3-CF₃ (5b), 4-CF₃ (5c), 3-Br (9b), 3-SiMe₃ (10b), 4-SiMe₃ (10c)]

Nitro- and iodo-pentafluorobiphenyls were prepared by electrophilic desilylation of the corresponding trimethylsilyl-containing pentafluorobiphenyls:

$$\begin{array}{c} \text{HNO}_{3}, \text{BF}_{3} \rightarrow 3'-(4')\text{NO}_{2}\text{C}_{6}\text{H}_{4}\text{C}_{6}\text{F}_{5} \\ \hline & (\textbf{10b or 10c}) \end{array} \xrightarrow{\text{HNO}_{3}, \text{BF}_{3}} 3'-(4')\text{NO}_{2}\text{C}_{6}\text{H}_{4}\text{C}_{6}\text{F}_{5} \\ \hline & (\textbf{6b or 6c}) \\ \hline & \text{ICl} \rightarrow 3'-(4')\text{IC}_{6}\text{H}_{4}\text{C}_{6}\text{F}_{5} \\ \hline & (\textbf{8b or 8c}) \end{array}$$

2,3,4,5,6-Pentafluoro-2' - and 4' -cyanobiphenyls (**7a** and **7c**) were obtained by the Ullmann reaction from C₆F₅Br, IC₆H₄CN and copper powder. 2,3,4,5,6-Pentafluoro-3'-cyanobiphenyl (**7b**) was prepared by the reaction of 2,3,4,5,6pentafluoro-3'-bromobiphenyl (**9b**) with CuCN in DMF. The identification of 2'-NO₂C₆H₄C₆F₅ (**6a**) was performed by using a mixture of 2'-, 3'- and 4'-NO₂C₆H₄C₆F₅ isomers (**6a**, **6b** and **6c**) produced by nitration of 2,3,4,5,6pentafluorobiphenyl [20]. It should be noted that the ¹⁹F NMR spectrum of 4'-NO₂C₆H₄C₆F₅ (**6c**) which we have obtained differs from the one published earlier {-137.8 ppm (F-2,6), -147.8 ppm (F-4), -156.1 ppm (F-3,5) [21]} (cf. Table 4), probably due to the use of C₆F₆ as the external reference by the authors of ref. 21. The syntheses of 2,3,4,5,6-pentafluoro-2'-trifluoromethylbiphenyl (**5a**) and 2,3,4,5,6-pentafluoro-2'-iodo-biphenyl (**8a**) will be described elsewhere. Hexafluorobiphenyls FC₆H₄C₆F₅ (**4a**, **4b** and **4c**) were identified via their ¹⁹F NMR spectra [12, 22].

Experimental

The ¹H and ¹⁹F NMR spectra were recorded on a Varian EM 360 L (¹H at 60 MHz and ¹⁹F at 56.4 MHz), a Bruker WP 80 SY (¹⁹F at 75.4 MHz) and a WP 200 SY (¹H at 200 MHz, ¹⁹F at 188.3 MHz) spectrometer (TMS and C_6F_6 as internal references). The chemical shifts $\delta(F)$ were assigned to CFCl₃ using a $\delta(F)$ value for C_6F_6 of -162.9 ppm. The IR spectra were recorded on a Specord M 80 instrument in KBr and the high-resolution mass spectra on a Finnigan MAT 8200 spectrometer.

Acetonitrile was refluxed over $KMnO_4$, dried with P_4O_{10} and CaH_2 and stored over 3 Å molecular sieves.

Moisture-sensitive solids were handled in a Braun glovebox MB 100 G. All experiments with $[C_6F_5Xe]^+[AsF_6]^-$ were performed under a dry argon atmosphere in PTFE–FEP tube reactors. Tables 4–6 list the NMR, IR and analytical data for the new compounds.

Reactions of $[C_6F_5Xe]^+[AsF_6]^-$ (2) with aromatic compounds

Acetonitrile (0.10–0.15 ml) was added to a known weight of salt 2. To the light yellow solution formed, an aromatic compound was added with a syringe. The reaction mixture was kept at room temperature until the $[C_6F_5Xe]^+$ signals disappeared from the ¹⁹F NMR spectrum. The yields of products were determined by ¹⁹F NMR methods using benzotrifluoride as a quantitative internal reference. The compounds were identified by adding samples prepared independently. The results are given in Table 1.

			i	
Compound	Solvent	¹ H NMR & (ppm)	¹⁹ F NMR & ((mqq
			F-2,6	F-4
2'-CH ₃ C ₆ H ₄ C ₆ F ₅ (3a)	CD30D	7.25 (C ₆ H ₄); 1.13 (CH ₃)	- 140.8	Ĩ
3'-CH ₃ C ₆ H ₄ C ₆ F ₅ (3b)	CD ₃ OD	7.42-7.20 (C ₆ H ₄); 2.40 (CH ₃)	-143.0	1
4'-CH ₃ C ₆ H ₄ C ₆ F ₅ (3c)	$C_{b}D_{b}$	7.04 (AA'BB') (C ₀ H ₄); 1.09 (CH ₃)	-144.0	1
$3'-Me_3SiC_6H_4C_6F_5$ (10b)	$c\tilde{D}_{3}OD$	7.62~7.38 (C ₆ H ₄); 0.28 (SiMe ₃)	-143.1	1
4'-Me ₃ SiC ₆ H ₄ C ₆ F ₅ (10c)	CD_3OD	7.52 (AA'BB') (C ₆ H ₄); 0.30 (SiMe ₃)	-143.0	Ì
$3'-NO_2C_6H_4C_6F_5$ (6b)	$CD_{3}OD$	7.90–7.50 (C ₆ H ₄)	-143.0	T
$4'-NO_2C_6H_4C_6F_5$ (6c)	CD ₃ OD	8.10 (AA'BB') (C_6H_4)	-142.6	1
$4'-NO_2C_6H_4C_6F_5$ (6c)	CDC1 ₃	$8.07 (AA'BB') (C_6H_4)$	-143.5	1
2'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5a) ⁸	cDCI		-139.8	1
3'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5b) ^b	CD3OD	7.85-7.45 (C ₆ H ₄)	-143.3	ï
4'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5c) ^c	CD_3OD	7.75 (AA'BB') (C ₆ H ₄)	-142.9	I
4'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5c)	CDC13		-143.9	1
2'-CNC ₆ H ₄ C ₆ F ₅ (7a)	$CD_{3}OD$	$8.00-7.64 (C_6H_4)$	- 140.4	I
$3'-CNC_6H_4C_6F_5$ (7b)	CD_3OD	$7.93-7.74 (C_6H_4)$	-143.0	1
4'-CNC ₆ H ₄ C ₆ F ₅ (7c)	CDC13	$7.66 (AA'BB') (C_0H_4)$	- 143.8	1
3'-BrC _a H,C _a F _e (9b)	CD.OD	7.69–7.44 (C.H.)	-142.9	Ì

Nuclear magnetic resonance spectral data

TABLE 4

^aIn CF₉C₆H₄C₆F₅ isomer mixture. ^b $\delta(CF_3)$, -62.5 ppm. ^c $\delta(CF_3)$, -62.2 ppm. ^d1,4-(3'-CF₃C₆H₄)₂C₆F₄: $\delta(CF_3)$, -62.6 ppm. ^d1,4-(4'-CF₃C₆H₄)₂C₆F₄: $\delta(CF_3)$, -63.7 ppm.

Compound	Solvent	¹ H NMR 8 (ppm)	¹⁹ F NMR 8 ((mqq)	
			F-2,6	F-4	F-3,5
2'-CH ₃ C ₆ H ₄ C ₆ F ₅ (3a)	CD30D	7.25 (C ₆ H ₄); 1.13 (CH ₃)	- 140.8	- 156.4	- 163.1
3'-CH ₃ C ₆ H ₄ C ₆ F ₅ (3b)	CD ₃ OD	7.42-7.20 (C ₆ H ₄); 2.40 (CH ₃)	-143.0	-157.0	-163.2
4'-CH ₃ C ₆ H ₄ C ₆ F ₅ (3c)	C,D,	7.04 (AA'BB') (C _n H ₄); 1.09 (CH ₃)	-144.0	-157.0	-163.0
3'-Me ₃ SiC ₆ H ₄ C ₆ F ₅ (10b)	CD ₃ OD	7.62~7.38 (C ₆ H ₄); 0.28 (SiMe ₃)	-143.1	- 156.7	-163.1
$4'-Me_3SiC_6H_4C_6F_5$ (10c)	CD ₃ OD	7.52 (AA'BB') (C ₆ H ₄); 0.30 (SiMe ₃)	-143.0	-156.8	-163.1
$3'-NO_2C_6H_4C_6F_5$ (6b)	CD ₃ OD	7.90–7.50 (C ₆ H ₄)	-143.0	-154.6	-162.3
$4'-NO_2C_6H_4C_6F_5$ (6c)	CD ₃ OD	8.10 (AA'BB') (C_6H_4)	-142.6	-154.4	-162.3
$4'-NO_2C_6H_4C_6F_5$ (6c)	CDC1 ₃	8.07 (AA'BB') (C ₆ H ₄)	-143.5	- 153.6	-161.9
2'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5a) ⁸	CDC1 ₃		- 139.8	-153.1	-163.2
3'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5b) ^b	CD3OD	7.85-7.45 (C ₆ H ₄)	143.3	-155.1	-162.5
4'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5c) ^c	$cD_{3}OD$	7.75 (AA'BB') (C ₆ H ₄)	-142.9	-155.1	-162.6
4'-CF ₃ C ₆ H ₄ C ₆ F ₅ (5c)	CDC1 ₃		-143.9	-154.9	-162.6
2'-CNC ₆ H ₄ C ₆ F ₅ (7a)	CD ₃ OD	$8.00-7.64 (C_6H_4)$	- 140.4	-153.2	-162.0
$3'-CNC_{6}H_{4}C_{6}F_{5}$ (7b)	CD ₃ OD	7.93-7.74 (C ₆ H ₄)	-143.0	-154.9	-162.5
4'-CNC ₆ H ₄ C ₆ F ₅ (7c)	CDC13	$7.66 (AA'BB') (C_{0}H_{4})$	- 143.8	-154.0	-162.0
3'-BrC ₆ H ₄ C ₆ F ₅ (9b)	CD ₃ OD	7.69-7.44 (C ₆ H ₄)	-142.9	-155.6	-162.7
$3'-IC_6H_4C_6F_5$ (8b)	CD ₃ OD	7.87 - 7.29 (C ₆ H ₄)	-142.9	-155.7	-162.7
$4'$ - $IC_6H_4C_6F_5$ (8c)	$CD_{3}OD + C_{6}D_{6}$	7.19 (AA'BB') (C ₆ H ₄)	-143.5	-155.8	-162.6
11b ^d	C_6D_6	$7.70-6.97 (C_6H_4)$	-143.9		-143.9
llc ^e	C ₆ D ₆	7.47 (AA'BB') (C ₆ H ₄)	-144.2		-144.2
$1-C_5H_{11}OC_6F_4H$ (12)	CD ₃ OD	$6.99 (C_0F_4H); 4.21 (OCH_2);$	-157.2		-140.3
		1.77 - 1.39 (CH ₂) ₃ ; 0.95 (CH ₃)			

TABLE 5 Infrared spectral data

Compound	Wavenumber (cm ⁻¹)
3'-Me ₃ SiC ₆ H ₄ C ₆ F ₅ (10b)	3032; 2956; 2896; 1652; 1522; 1498; 1480; 1388; 1340; 1324; 1252; 1120; 1068; 990; 892; 840; 806; 754; 736; 708; 692; 648; 620.
$4'-Me_3SiC_6H_4C_6F_5$ (10c)	3068; 3028; 2956; 2900; 1654; 1600; 1550; 1526; 1504; 1496; 1488; 1392; 1340; 1324; 1252; 1118; 1108; 1062; 990; 842; 828; 736; 700; 624; 516.
$3'-NO_2C_6H_4C_6F_5$ (6b)	3100; 2964; 1652; 1544; 1526; 1496; 1434; 1108; 1090; 1074; 990; 920; 904; 836; 812; 744; 724; 700; 680; 644.
$4'-NO_2C_6H_4C_6F_5$ (6c)	3104; 1658; 1604; 1524; 1508; 1494; 1404; 1396; 1350; 1312; 1288; 1200; 1108; 1064; 1012; 988; 864; 840; 748; 740; 728; 688; 438.
$3'-CF_3C_6H_4C_6F_5$ (5b) ^a	3080; 1654; 1526; 1502; 1490; 1446; 1420; 1388; 1338; 1310; 1284; 1198; 1172; 1134; 1100; 1080; 1068; 990; 908; 896; 812; 780; 768; 700; 676; 664; 644.
$4'-CF_3C_6H_4C_6F_5$ (5c)	1656; 1620; 1580; 1534; 1516; 1490; 1432; 1408; 1326; 1178; 1164; 1146; 1126; 1108; 1062; 1020; 988; 956; 860; 848; 768; 720; 600; 508; 404.
2'-CNC ₆ H ₄ C ₆ F ₅ (7 a)	3084; 2236; 1654; 1596; 1572; 1526; 1500; 1484; 1448; 1324; 1284; 1188; 1108; 1062; 1032; 990; 968; 864; 800; 774; 716; 644; 556; 492.
$3'-CNC_6H_4C_6F_5$ (7b)	3084; 2932; 2236; 1652; 1580; 1528; 1498; 1480; 1436; 1410; 1332; 1232; 1164; 1080; 990; 920; 900; 808; 780; 758; 688; 656; 584.
4'-CNC ₆ H ₄ C ₆ F ₅ (7c)	3000; 2240; 1722; 1654; 1562; 1530; 1510; 1488; 1408; 1280; 1188; 1112; 1076; 1066; 988; 860; 780; 756; 554.
$3'-BrC_{6}H_{4}C_{6}F_{5}$ (9b)	3064; 1654; 1596; 1562; 1522; 1496; 1480; 1432; 1404; 1380; 1320; 1096; 1080; 1064; 988; 912; 892; 879; 804; 770; 736; 698; 684.
$3'-IC_6H_4C_6F_5$ (8b)	1652; 1564; 1524; 1496; 1476; 1428; 1396; 1096; 1076; 1062; 988; 912; 876; 800; 764; 736; 688; 680.
$4'-IC_6H_4C_6F_5$ (8c)	3060; 1656; 1592; 1560; 1524; 1490; 1392; 1322; 1200; 1068; 1060; 1008; 1000; 986; 944; 852; 828; 806; 772; 500.
1,4-(3'-CF ₃ C ₆ H ₄) ₂ C ₆ F ₄ (11b)	3084; 1524; 1496; 1480; 1434; 1408; 1342; 1330; 1320; 1300; 1282; 1186; 1176; 1128; 1096; 1078; 978; 950; 908; 816; 804; 772; 760; 752; 704; 692; 672; 644.
$1,4-(4'-CF_3C_6H_4)_2C_6F_4$ (11c)	1622; 1472; 1406; 1336; 1320; 1170; 1132; 1108; 1070; 1020; 978; 954; 840; 766; 676; 600.
$1-C_5H_{11}OC_6F_4H$ (12) ^a	3088; 2960; 2935; 2870; 1638; 1514; 1489; 1470; 1400; 1383; 1266; 1215; 1170; 1120; 1087; 966; 937; 871; 822; 733; 707.

"Neat liquid.

TABLE 6

Analytical data

Compound	Found (%	Empirical formula		
	Calculate			
	C	Н	F	
3'-Me ₃ SiC ₆ H ₄ C ₆ F ₅ (10b)	$\frac{57.2}{56.9}$	$\frac{4.37}{4.11}$	$\frac{30.0}{30.1}$	$C_{15}H_{13}F_5Si$
$4'-Me_3SiC_6H_4C_6F_5$ (10c)	$\frac{56.7}{56.9}$	$\frac{4.32}{4.11}$	$\frac{29.8}{30.1}$	$\mathbf{C_{15}H_{13}F_5Si}$
$3'-NO_2C_6H_4C_6F_5$ (6b) ^a	$\frac{50.5}{49.8}$	$\frac{1.52}{1.38}$	$\frac{32.5}{32.9}$	$C_{12}H_4F_5NO_2$
$3'-CF_3C_6H_4C_6F_5$ (5b)	$\frac{50.3}{50.0}$	$\frac{1.41}{1.28}$	$\frac{48.6}{48.7}$	$\mathrm{C_{13}H_4F_8}$
$1,4-(3'-CF_3C_6H_4)_2C_6F_4$ (11b)	$\frac{55.2}{54.8}$	$\frac{1.96}{1.82}$	$\frac{43.6}{43.4}$	$C_{20}H_8F_{10}$
$1,4-(4'-CF_3C_6H_4)_2C_6F_4$ (11c)	$\frac{54.7}{54.8}$	$\frac{1.96}{1.82}$	$\frac{43.4}{43.4}$	$C_{20}H_8F_{10}$
$1-C_5H_{11}OC_6F_4H$ (12)	$\frac{55.9}{55.9}$	$\frac{5.00}{5.08}$	$\frac{31.9}{32.2}$	$C_{11}H_{12}F_4O$

^aFound: N, 4.94%; calculated: N, 4.84%.

No reaction occurred on treatment of a suspension of salt 2 in dichloromethane with fluorobenzene or benzotrifluoride for 122 h, or of an acetonitrile solution of salt 2 with the pentafluorobenzene derivatives C_6F_5X (X=H, F, I, CN, SiMe₃) (60–70 h).

Fluorination of iodopenta fluorobenzene with xenon difluoride in the presence of $BF_3\cdot OEt_2$

Xenon difluoride (0.199 g, 1.18 mmol) was added gradually to a stirred solution of iodopentafluorobenzene (0.294 g, 1.00 mmol) and BF₃·OEt₂ (20 μ l, 0.16 mmol) in 1.5 ml of dichloromethane placed in an FEP reactor. When gas evolution stopped, the mixture was stirred for a further 30 min and the volatile components were removed *in vacuo* to produce 0.291 g (88%) of difluoroiodopentafluorobenzene.

Reaction of $C_6F_5IF_2$ with $B(C_6F_5)_3$

A cool (-50 °C) solution of B(C₆F₅)₃ (77.1 mg, 0.15 mmol) in 0.4 ml of MeCN was added to a cool (-50 °C) solution of C₆F₅IF₂ (50 mg, 0.15 mmol) in acetonitrile (0.25 ml). After 4 d at -50 °C, all the borane had reacted. According to ¹⁹F NMR spectroscopy [(C₆F₅)₂I]⁺X⁻ was formed in quantitative yield {X=BF₄ (37 mol%) and (C₆F₅)₃BF (63 mol%)} In dichloromethane (-50 °C), the reaction was faster (<1 h) and gave a suspension. The solid when dissolved in MeCN contained a different mixture of anions X⁻: X=BF₄, C₆F₅BF₃, (C₆F₅)₂BF₂ and (C₆F₅)₃BF (6, 45, 37 and 12 mol%).

Preparation of 2,3,4,5,6-pentafluoro-2'-methylbiphenyl (3a)

A solution consisting of 3.42 g (20 mmol) 2-bromotoluene in 5 ml of ether was added to a cool (-25 °C) solution of 23 mmol of BuLi in 14 ml of hexane and 10 ml of ether. The solution was stirred at 10–20 °C for 1 h and added gradually to a solution of 3.72 g (20 mmol) hexafluorobenzene in 45 ml of ether. The mixture was stirred at room temperature for 1 h, then poured into 5% HCl; the organic layer was separated and the aqueous layer extracted with ether. The combined extracts were washed with water and dried over CaCl₂. The solvent was distilled off. The residue was distilled *in vacuo* to give 3.75 g (70%) of the product **3a**, b.p. 78–80 °C/6 mmHg (200–203 °C [11]). The IR spectrum was correct [23].

Preparation of 2,3,4,5,6-pentafluoro-3'-methylbiphenyl (3b)

This was obtained in a similar manner from 4.28 g (25 mmol) 3bromotoluene, 30 ml of 1.1 M BuLi in pentane and 9 g (48 mmol) hexafluorobenzene in 55 ml of ether. Vacuum distillation gave 4.20 g (65%) of the product **3b**, b.p. 83–85 °C/2 mmHg (236–238 °C [11]). The IR spectrum was correct [23].

Preparation of 2,3,4,5,6-pentafluoro-4'-methylbiphenyl (3c)

This was obtained in a similar manner from 4.28 g (25 mmol) 4bromotoluene, 30 ml of 1.6 M BuLi in hexane and 4.65 g (25 mmol) hexafluorobenzene in 55 ml of ether. Crystallization from hexane gave 4.06 g (63%) of the product 3c, m.p. 116–118 °C (117–118 °C [24], 119–120 °C [11]). The IR spectrum was correct [23].

Preparation of 2,3,4,5,6-pentafluoro-3'-bromobiphenyl (9b) (nc)

This compound was prepared similarly from 4.7 g (20 mmol) 1,3dibromobenzene, 31 ml of 1.1 M BuLi in pentane and 9 g (48 mmol) hexafluorobenzene in 61 mg of ether. Crystallization from MeOH gave 2.9 g (48%) of the product **9b**, m.p. 60–61 °C. Analysis: Found: M⁺ 321.9413 (by mass spectrum). $C_{12}H_4BrF_5$ requires: M⁺ 321.9417.

Preparation of 2,3,4,5,6-pentafluoro-3'-trifluoromethylbiphenyl (5b) (nc)

This was obtained in a similar manner from 3.38 g (15 mmol) 3bromobenzotrifluoride, 13 ml of 1.6 M BuLi in hexane and 2.80 g (15 mmol) hexafluorobenzene in 40 ml of ether. After the solvent had been distilled off and the residue crystallized from hexane, 0.74 g (11%) 1,4-bis(3'trifluoromethylphenyl)tetrafluorobenzene (**11b**) (nc) was isolated, m.p. 126–128 °C. From the mother liquor, 2,3,4,5,6-pentafluoro-3'-trifluoromethylbiphenyl (**5b**) was isolated by preparative GLC methods, b.p. 85–87 °C/14 mmHg.

Preparation of 2,3,4,5,6-pentafluoro-4'-trifluoromethylbiphenyl (5c) (nc)

This was obtained in a similar manner from 3.38 g (15 mmol) 4-bromobenzotrifluoride, 13 ml of 1.6 M BuLi in hexane and 2.80 g (15 mmol)

hexafluorobenzene in 50 ml of ether. After the solvent had been distilled off, the residue was crystallized from hexane to give 1.3 g (20%) of 1,4bis(4'-trifluoromethylphenyl)tetrafluorobenzene (nc) (**11c**), m.p. 228–230 °C. The mother liquor was evaporated and the residue sublimed to give 0.93 g (20%) of 2,3,4,5,6-pentafluoro-4'-trifluoromethylbiphenyl (**5c**), m.p. 59–60 °C (from MeOH). Analysis: Found: M⁺ 312.0185 (by mass spectrum). $C_{13}H_4F_8$ requires: M⁺ 312.0185.

Preparation of 2,3,4,5,6-pentafluoro-3'-trimethylsilylbiphenyl (10b) (nc)

This was obtained in a similar manner from 7.43 g (32 mmol) 3bromophenyltrimethylsilane, 22 ml of 1.6 M BuLi in hexane and 7.0 g (37 mmol) hexafluorobenzene in 55 ml of ether. Vacuum distillation gave 5.20 g (51%) of the product **10b**, b.p. 105–107 °C/8 mmHg.

Preparation of 2,3,4,5,6-pentafluoro-4'-trimethylsilylbiphenyl (10c) (nc) This was obtained by a similar procedure from 5.47 g (24 mmol) 4bromophenyltrimethylsilane, 15 ml of 1.6 M BuLi in hexane and 4.3 g (24 mmol) hexafluorobenzene in 60 ml of ether. Vacuum distillation gave 3.94 g (54%) of the product 10c, b.p. 111-113 °C/6 mmHg.

Preparation of 2,3,4,5,6-pentafluoro-3'-iodobiphenyl (8b) (nc)

Iodine monochloride (0.7 g, 4.3 mmol) dissolved in 1 ml of CHCl₃ (0 °C) was added dropwise to a solution consisting of 0.52 g (1.57 mmol) 2,3,4,5,6-pentafluoro-3'-trimethylsilylbiphenyl (**10b**) in 1 ml of CHCl₃. The solution was stirred for 3 h at room temperature, then treated with an aqueous Na₂S₂O₅ solution. The solvent was distilled off and the residue crystallized from MeOH. This gave 0.42 g (72%) of the product **8b**, m.p. 48–49 °C. Analysis: Found: M⁺ 369.9291 (by mass spectrum). $C_{12}H_4F_5I$ requires: M⁺ 369.9280.

Preparation of 2,3,4,5,6-pentafluoro-4'-iodobiphenyl (8c) (nc)

This was obtained in a similar manner from 1.58 g (5 mmol) 2,3,4,5,6pentafluoro-4'-trimethylsilylbiphenyl (**10c**) in 12 ml of CH_2Cl_2 and 0.98 g (6 mmol) ICl in 8 ml of CH_2Cl_2 (0 °C). Yield of product 8c, 1.21 g (65%), m.p. 110–111 °C. Analysis: Found: M⁺ 369.9264 (by mass spectrum). $C_{12}H_4F_5I$ requires: M⁺ 369.9280.

Preparation of 2,3,4,5,6-pentafluoro-3'-nitrobiphenyl (6b)

A solution consisting of 0.35 g (5.6 mmol) 100% HNO₃ and 0.63 g (5.8 mmol) BF₃·NCMe in 10 ml of MeCN was added to a solution consisting of 0.8 g (2.53 mmol) 2,3,4,5,6-pentafluoro-3'-trimethylsilylbiphenyl (**10b**) in 5 ml of MeCN. The mixture was refluxed for 5 h, then poured on to ice, extracted with dichloromethane and dried over CaCl₂. The solvent was distilled off and the residue sublimed to give 0.35 g (48%) of the product **6b**, m.p. 110–112 °C (106–108 °C [22], 113–114 °C [20]).

Preparation of 2,3,4,5,6-pentafluoro-4'-nitrobiphenyl (6c)

This was obtained similarly from 0.45 g (7.0 mmol) 100% HNO₃, 0.66 g (6.1 mmol) BF₃·NCMe and 1.36 g (4.3 mmol) 2,3,4,5,6-pentafluoro-4'-trimethylsilylbiphenyl (**10c**) in 10 ml of MeCN. This gave 0.82 g (66%) of the product **6c**, m.p. 89–90 °C (87–89 °C [22], 92–93 °C [20], 93–94 °C [21]). Analysis: Found: M^+ 289.0166 (by mass spectrum). $C_{12}H_4F_5NO_2$ requires: M^+ 289.0162.

Preparation of 2,3,4,5,6-pentafluoro-2'-cyanobiphenyl (7a) (nc)

Bromopentafluorobenzene (1.1 g, 4.4 mmol), 2-iodobenzonitrile (1.0 g, 4.4 mmol) and copper powder (2.0 g, 31 mmol) were heated in a sealed glass tube for 18 h at 190–200 °C. The mixture was cooled, extracted with hot CHCl₃ and the solvent distilled off. The dark residue was extracted with hot hexane and the solvent again distilled off. Preparative TLC (silica gel, eluent CCl₄) gave 0.23 g (31%) decafluorobiphenyl, 0.1 g (22%) 2,2'-dicyanobiphenyl (both compounds identified by IR spectroscopy) and 0.50 g (42%) 2,3,4,5,6-pentafluoro-2'-cyanobiphenyl (7a), m.p. 73–74 °C (from pentane). Analysis: Found: M⁺ 269.0264 (by mass spectrum). $C_{13}H_4F_5N$ requires: M⁺ 269.0264.

Preparation of 2,3,4,5,6-pentafluoro-4'-cyanobiphenyl (7c) (nc)

This was obtained in a similar manner from bromopentafluorobenzene (1.1 g, 4.4 mmol), 4-iodobenzonitrile (1.0 g, 4.4 mmol) and copper powder (2.0 g, 31 mmol). Yield, 0.32 g (27%) **7c**, m.p. 112–113 °C (from MeOH). Analysis: Found: M^+ 269.0270 (by mass spectrum). $C_{13}H_4F_5N$ requires: M^+ 269.0264.

Preparation of 2,3,4,5,6-pentafluoro-3'-cyanobiphenyl (7b) (nc)

2,3,4,5,6-Pentafluoro-3'-bromobiphenyl (9b) (1.0 g, 3.1 mmol) and CuCN (0.38 g, 4.2 mmol) were refluxed in DMF (3 ml) for 8 h. Then a solution consisting of 0.7 g FeCl₃·6H₂O in 7 ml of 1 N HCl was added. The mixture was refluxed for a further 30 min and stream distilled. Yield of product 7b, 0.65 g (78%), m.p. 75–76 °C (from MeOH). Analysis: Found: M⁺ 269.0267 (by mass spectrum). $C_{13}H_4F_5N$ requires: M⁺ 269.0264.

Reaction of $C_6F_5NH_2$ and $C_5H_{11}ONO$ with C_6H_5I

Pentyl nitrite (2.5 ml, 19 mmol) was added dropwise to a stirred solution of $C_6F_5NH_2$ (3.0 g, 16 mmol) in iodobenzene (14.9 g, 73 mmol). After a few moments, a vigorous reaction started and the temperature of the reaction mixture spontaneously increased up to 80 °C. After 30 min, the solution was cooled and analyzed by ¹⁹F NMR spectroscopy. Yields of compounds C_6F_5I , C_6F_5H , $C_6F_5C_6H_5$, 2'-IC₆H₄C₆F₅ (**8a**), 3'-IC₆H₄C₆F₅ (**8b**) and 4'-IC₆H₄C₆F₅ (**8c**) were 35.8, 8.4, 6.3, 11.5, 7.7 and 12.3%, respectively.

Reaction of $C_6F_5NH_2$ and $C_5H_{11}ONO$ with $C_6H_5SiMe_3$

The reaction of $C_6F_5NH_2$ (0.93 g, 5.2 mmol), pentyl nitrite (1.0 ml, 7.5 mmol) with trimethylsilylbenzene (2.9 g, 19.2 mmol) was conducted at 80

°C as described above (mixing of the reagents was not accompanied by any pronounced exothermal effect). The pentafluorobenzene and 2,3,4,5,6-penta-fluorobiphenyl obtained were identified by ¹⁹F NMR spectroscopy (yields, 32 and 39%, respectively).

Reaction of $C_6F_5NH_2$ and $C_5H_{11}ONO$ with C_6H_5CN

Pentyl nitrite (1.6 ml, 14 mmol) was added to a solution of $C_6F_5NH_2$ (2.0 g, 11 mmol) in benzonitrile (10 ml, 97 mmol) (80 °C). A mixture of 2'-, 3'- and 4'-CNC₆H₄C₆F₅ (**7a, 7b** and **7c**) (yields, 20.4, 24.5 and 13.1%, respectively) resulted. The reaction mixture also contained pentafluorobenzene (yield, 18%) and some unidentified products resulting from the partial oxidation of pentafluoroaniline.

Reaction of $C_6F_5NH_2$ and $C_5H_{11}ONO$ with $C_6H_5CF_3$

A similar reaction between 7.0 g (38 mmol) $C_6F_5NH_2$, 5 ml (43 mmol) of pentyl nitrite with 20 ml (164 mmol) of benzotrifluoride gave a mixture of 2'-, 3'- and 4'-CF₃C₆H₄C₆F₅ (**5a**, **5b** and **5c**) (yields, 12.1, 31.0 and 12.1%, respectively) and 1-pentyloxy-2,3,5,6-tetrafluorobenzene (29%).

Preparation of 1-pentyloxy-2,3,5,6-tetrafluorobenzene (12) (nc)

BuLi in pentane (30 ml of a 1.1 M solution) was added via a syringe to 10 ml of pentanol. To the resulting suspension, 5.1 g (30 mmol) pentafluorobenzene were added with stirring. The mixture was heated at 60–70 °C for 6 h, then poured into 5% HCl. The organic layer was separated, diluted with CHCl₃ (10 ml), dried over CaCl₂ and distilled *in vacuo* to give 2.5 g (35%) of product **12**, b.p. 67–70 °C/7 mmHg.

Acknowledgements

We gratefully thank Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for financial support.

References

- 1 W. Breuer, H.J. Frohn, St. Jakobs and M. Giesen, 12th Int. Symp. Fluorine Chem., Santa Cruz, CA, USA, 1988, p. 213.
- 2 H.J. Frohn and St. Jakobs, J. Chem. Soc., Chem. Commun., (1989) 625.
- 3 D. Naumann and W. Tyrra, J. Chem. Soc., Chem. Commun., (1988) 47.
- 4 H.J. Frohn, St. Jakobs and G. Henkel, Angew. Chem., Int. Ed. Engl., 28 (1989) 1506.
- 5 H.J. Frohn and St. Jakobs, J. Fluorine Chem., 45 (1989) 11.
- 6 H.J. Frohn, St. Jakobs and Chr. Rossbach, J. Fluorine Chem., 54 (1991) 8.
- 7 H.J. Frohn, St. Jakobs and Chr. Rossbach, Eur. J. Solid Inorg. Chem., 29 (1992) 729.
- 8 H.J. Frohn and A. Priwitzer, unpublished results.
- 9 M.J. Shaw, H.H. Hyman and R. Filler, J. Am. Chem. Soc., 92 (1970) 6498.
- 10 P.H. Oldham, G.H. Williams and B.A. Wilson, J. Chem. Soc., C, (1971) 1094.
- 11 J.M. Birchall, R. Hazard, R.N. Haszeldine and W.W. Wakalski, J. Chem. Soc. C, (1967) 47.

- 12 J.P.B. Sandall, R. Bolton and G.H. Williams, J. Fluorine Chem., 3 (1973/74) 35.
- 13 R. Bolton, J.P.B. Sandall and G.H. Williams, J. Chem. Res. (S), (1977) 24; J. Chem. Res. (M), (1977) 0373.
- 14 F.M. Beringer and R.A. Falk, J. Am. Chem. Soc., 86 (1964) 4442.
- 15 G.A. Olah and E.G. Melby, J. Am. Chem. Soc., 94 (1972) 6220.
- 16 J.M. Birchall, R.N. Haszeldine and J.G. Speight, J. Chem. Soc. C, (1970) 2187.
- 17 S. Stavber and M. Zupan, J. Org. Chem., 46 (1981) 300.
- 18 V.V. Bardin and H.J. Frohn, J. Fluorine Chem., 60 (1993) 141.
- 19 I.I. Maletina, V.V. Orda, N.N. Aleinikov, B.L. Korsunskii and L.M. Yagupolskii, *Zh. Org. Khim.*, 12 (1976) 1371.
- 20 J.M. Birchall, R.N. Haszeldine and H. Woodfine, J. Chem. Soc., Perkin Trans. 1 (1973) 1121.
- 21 L.D. Field and G.K. Rierens, Tetrahedron, 46 (1990) 7059.
- 22 W.A. Sheppard, J. Am. Chem. Soc., 92 (1970) 5419.
- 23 P.J.N. Brown and E.F. Mooney, Spectrochim. Acta, 24A (1968) 1317.
- 24 P.L. Coe and G.M. Pearl, J. Organomet. Chem., 31 (1971) 55.